Jeep MS3

I designed a plug and play MS3 Megasquirt board for my 91 YJ with the stock 60-pin connector that I salvaged from a spare pcm.   My board uses the MS3 daughterboard and some easy to source components.  As the stock pcm is located under the hood  I used a universal watertight enclosure and have the connector stick through the lid.  The challenge is getting the connector properly sealed though.  I could have used ampseal connectors, but then I’d have to make a boomslang harness from the megasquirt to the stock wiring loom with all the problems this might cause.

I even made some instructions because I usually forget what I did on my own projects :).

And of course the Bill Of Materials or a very fancy one you can download here. You must download and save it, you cannot view it directly in your browser!

Base maps

Base map for 4.0 with distributor (version Oct 5th, 2020)

Base map for 4.0 with 3 logical coils (version Oct 6th, 2020)

Although I designed it for my 4.0, this board works on the 2.5 and Renix Jeeps as well.

Here’s the connector:

And the alternative, ampseal connectors.  Perfect seal, but a harness is needed.

The bare board in the case.  Below it is a printout of the pcb.

Functions:

  • 6 injector drivers
  • 3 logical coil drivers (spark A, B, C)
  • 1 high current coil driver (for distributor setup like my YJ).  When using the high current driver, spark B and spark C can be used as spare outputs.
  • 1 boost control output (or high current spare output on PP3 – Boost)
  • 1 spare output on injector H (0.8A)
  • 1 spare analog input on JS4 (can be used for barometric correction for instance)
  • A/C control (if no A/C then there’s another spare output on injector G and 1 spare ground switch input on PE1)
  • check engine light
  • alternator control output
  • VSS input
  • optional barometric sensor
  • optional knock sensor
  • optional PmodRTCC realtime clock.  It is 100% compatible with th e DIY module.
  • optional Bluetooth module for remote cellphone / laptop / tablet tuning with TunerStudio, RealDash, MSdroid, ShadowDash etc.
  • optional Wifi module for remote cellphone / laptop / tablet tuning with TunerStudio, RealDash, MSdroid, ShadowDash etc.

Wiring:

The board uses all stock wiring except for the following:

  • Logic level spark outputs A, B, C
  • Boost control
  • Knock sensor
  • Spare output
  • Spare input

Luckely,  2 wires (PIN 25 and 45) go to the diagnostics connector so these can be repurposed for some of these functions.  Suppose you are using the 3 spark outputs, than you can use spark A on PIN 19 (the original high current coil output) and spark B and C on PIN 45 and 25.  Then pick them up under the hood.  That’s what I’ll be doing as I don’t need boost control, knock sensor or the spare in- and outputs.  I also don’t like cutting the oem wiring.

Remarks:

  1. Alternator Control
    There’s 2 ways to control the alternator:
  • MS3 alternator control
    The Jeep’s alternator field wire pulls 5A and has pretty high flyback currents.  There is a IRLZ44 + 3A flyback diode on board that can directly drive the alternator.  Use a heatsink!
    Should you want to keep high currents out of the ecu, you could run this output to a solid state relay which in turn drives the alternator.  No heatsink needed but make sure to take the flyback diode out of the MS3 and install it over the alternator field coil as a protection for the ss relay.  A 1N4001 (1A) is probably enough, but I use a 3A version as a safety measure.
    A Dorman 902-303 or SMR RY330K fan controller works fine.
  • External voltage regulator
    If you need no ecu control, or the above is too complicated, just use an external regulator.  Cheap and easy, but no voltage adjustment of course.  A Bosch RE55 works fine.
    Additional bonus of an external regulator is that this frees up a wire on PIN 20 for other functions (see above).

Building the board

The build is very easy.  All components and their values are marked on the board, as well as their function.  My fancy bom shows were all components are located. All circuits have their own outline, so it’s just a matter of deciding if you need them or not.  Unneeded circuits can be left empty.  

For example, here’s a closeup of the alternator field driver, spark drivers and check engine light.   This closeup is of an older version, but the principle is the same :).

closeup.png

If you’re using the high current coil driver for example, the spark A,B,C circuit can be entirely omitted.
If you’re using an external voltage regulator, leave out Q21 and R45.
If you don’t need a check engine light, leave out Q22 and R46.
etc …

The power supply transistor (U5 – LM237), alternator driver (IRLZ44) and coil driver (BIP373) all need a heatsink.  Boost control doesn’t.

Create a website or blog at WordPress.com

Up ↑

Create your website at WordPress.com
Get started
%d bloggers like this: